Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

A nido-6-manganadecaborane salt

Alan R. Kennedy* and John H. Morris

Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, Scotland
Correspondence e-mail: a.r.kennedy@strath.ac.uk

Received 8 August 2000
Accepted 6 December 2000
A new manganadecaborane has been isolated as a previously unsuspected product from the reaction of $\left[\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Br}\right]$ with $\mathrm{K}\left[\mathrm{B}_{9} \mathrm{H}_{14}\right]$. The anion of tetrabutylammonium 5-bromo-6,6,6-tricarbonyl-6-manganadodecahydrodecaborate(1-), $\left(\mathrm{C}_{16} \mathrm{H}_{36} \mathrm{~N}\right)\left[\mathrm{Mn}\left(\mathrm{B}_{9} \mathrm{H}_{12} \mathrm{Br}\right)(\mathrm{CO})_{3}\right]$, has a nido cage structure. The Mn atom is bonded through three $\mathrm{B}-\mathrm{Mn}$ bonds of similar length [2.221 (4), 2.224 (3) and 2.236 (3) \AA] and two bridging H atoms. The position of the bromo substituent breaks the twofold symmetry of the cage found in simple analogues, and this is reflected in the $\mathrm{B}-\mathrm{B}$ bond parameters.

Comment

Reactions between $\left[\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Br}\right]$ and $\mathrm{K}\left[\mathrm{B}_{9} \mathrm{H}_{14}\right]$ have been shown to produce a range of nido-metalloboranes, including salts of the $\left[6-(\mathrm{CO})_{3}-6-\mathrm{Mn}\left(\mathrm{B}_{9} \mathrm{H}_{13}\right)\right]^{-}$anion and the neutral isomeric species $\left[2-(\right.$ thf $\left.)-6-(\mathrm{CO})_{3}-6-\mathrm{Mn}\left(\mathrm{B}_{9} \mathrm{H}_{12}\right)\right]$, (I), and [5-(thf)-6-(CO) $)_{3}-6-\mathrm{Mn}\left(\mathrm{B}_{9} \mathrm{H}_{12}\right)$], (II) (where thf is tetrahydrofuran; Lott et al., 1973; Lott \& Gaines, 1974). In our hands, the reaction also produces the previously unknown bromo-substituted anion $\left[5-\mathrm{Br}-6-(\mathrm{CO})_{3}-6-\mathrm{Mn}\left(\mathrm{B}_{9} \mathrm{H}_{12}\right)\right]^{-}$, which we have isolated and characterized as the tetra- n butylammonium salt, (III).

(III)

Crystallographic analysis of the dark-red crystals obtained showed (III) to consist of discrete cations and anions which are separated by at least van der Waals distances. Although the n-butyl arms of the cation are rotationally disordered, the metalloborane anion seems to be unaffected. Fig. 1 shows that the coordination geometry about Mn 1 to be quasi-octahedral with the two bridging H atoms trans to carbonyl ligands. The main distortion from idealized geometry is the $\mathrm{C} 1-\mathrm{Mn} 1-\mathrm{B} 2$ angle of $161.4(1)^{\circ}$. The terdentate bonding of the borane cage to manganese through only three B atoms is relatively unusual and can be described as arising from a formal neutral
$\left\{\mathrm{Mn}(\mathrm{CO})_{3}\right\}$ vertex which contributes one electron and three orbitals to the cluster bonding (Kennedy, 1986). The only relevant compounds found in a search of the Cambridge Structural Database (Allen \& Kennard, 1993) were (I), (II), and the related zwitterion $\left[8-\left\{\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{O}\right\}-6-(\mathrm{CO})_{3}-6-\right.$ $\mathrm{Mn}\left(\mathrm{B}_{9} \mathrm{H}_{12}\right)$], (IV) (Gaines et al., 1974), although similar interactions have been proposed for other compounds (see, for example, Fischer \& Gaines, 1979). These three compounds display non-symmetrical bonding to the metal, as is shown by both their B5-B2 and B2-B7 distances $[1.764$ (6) and 1.807 (6) \AA for (II), and 1.783 (9) and 1.816 (10) \AA for (IV)] and by their $\mathrm{Mn}-\mathrm{B}$ bond lengths [ranges 2.206 (5)-2.232 (4) and 2.209 (6) -2.262 (7) \AA for (II) and (IV), respectively]. A related Mo compound which also has a five-substituted halogen atom similar to (III), i.e. [5-Cl-6-(CO) $2_{2}-6-\left(\mathrm{PPhMe}_{2}\right)_{2}{ }^{-}$ $6-\mathrm{Mo}\left(\mathrm{B}_{9} \mathrm{H}_{12}\right)$] (Greenwood et al., 1986), also shows nonsymmetrical bonding. This contrasts with the more symmetrical bonding mode of (III) (see Table 1). The B5-Br1 distance of 2.025 (3) A lies near the upper limit found for $B-$ Br bonds (range of $1.881-2.052 \AA$ for 3652 fragments), presumably as a consequence of electron withdrawal by the metal. The overall geometry of the boron cage is similar to that of $\mathrm{B}_{10} \mathrm{H}_{14}$ (Brill et al., 1971), but the two long $\mathrm{B}-\mathrm{B}$ bonds, $\mathrm{B} 5-\mathrm{B} 10$ and $\mathrm{B} 7-\mathrm{B} 8$, are now different from each other [1.994 (5) and 2.027 (6) \AA] due to the unsymmetrical position of the halide substituent. The remaining $B-B$ bond lengths range from 1.713 (5) to 1.801 (5) \AA.

Figure 1

ORTEPII (Johnson, 1976) view of the anion of (III) with non-H atoms shown with 50% probability ellipsoids and H atoms as small spheres of arbitrary size.

Experimental

Compound (III) was synthesized by adaption of the method of Lott \& Gaines (1974) and was recrystallized from a water, ethanol and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution by slow evaporation.

Crystal data

$\left(\mathrm{C}_{16} \mathrm{H}_{36} \mathrm{~N}\right)\left[\mathrm{Mn}\left(\mathrm{B}_{9} \mathrm{H}_{12} \mathrm{Br}\right)(\mathrm{CO})_{3}\right]$	$D_{x}=1.239 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=570.72$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{1} / n$	Cell parameters from 34786
$a=11.7469(1) \AA$	reflections
$b=18.2581(2) \AA$	$\theta=1.81-27.48^{\circ}$
$c=14.5558(1) \AA$	$\mu=1.757 \mathrm{~mm}^{-1}$
$\beta=101.352(1)^{\circ}$	$T=150(2) \mathrm{K}$
$V=3060.79(5) \AA^{3}$	Plate, dark red
$Z=4$	$0.20 \times 0.20 \times 0.05 \mathrm{~mm}$

$\left(\mathrm{C}_{16} \mathrm{H}_{36} \mathrm{~N}\right)\left[\mathrm{Mn}\left(\mathrm{B}_{9} \mathrm{H}_{12} \mathrm{Br}\right)(\mathrm{CO})_{3}\right]$
$M_{r}=570.72$
Monoclinic, P_{1} / 。
$a=11.7469$ (1) \circ
$c=145558$ (1) \AA
$\beta=101.352(1)^{\circ}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.239 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 34786 \\
& \quad \text { reflections } \\
& \theta=1.81-27.48^{\circ} \\
& \mu=1.757 \mathrm{~mm}^{-1} \\
& T=150(2) \mathrm{K} \\
& \text { Plate, dark red } \\
& 0.20 \times 0.20 \times 0.05 \mathrm{~mm}
\end{aligned}
$$

Data collection

Nonius KappaCCD diffractometer φ and ω scans to fill Ewald sphere Absorption correction: multi-scan (Blessing, 1997)
$T_{\text {min }}=0.71, T_{\text {max }}=0.92$
34786 measured reflections
6964 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.143$
$S=1.03$
6964 reflections
353 parameters
H atoms: see below

> 5105 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.053$
> $\theta_{\max }=27.48^{\circ}$
> $h=-15 \rightarrow 15$
> $k=-22 \rightarrow 23$
> $l=-18 \rightarrow 18$
> Intensity decay: $<2 \%$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0796 P)^{2}\right.$
$+1.8574 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=1.02 \mathrm{e}^{\mathrm{m}}{ }^{-3}$
$\Delta \rho_{\text {min }}=-0.52 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
(Sheldrick, 1997)
Extinction coefficient: 0.0048 (7)
positions and in a riding mode for the major disorder component but were omitted from the minor disorder component. The methyl-group orientations were obtained by refining torsional parameters. The largest residual electron-density peaks all lie in the vicinity of the disordered cation and have values of $1.02,0.65$ and $0.50 \mathrm{e}_{\AA^{-3}}$.

Data collection: DENZO (Otwinowski \& Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: $D E N Z O$ and $C O L L E C T$; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97.

We thank the EPSRC X-ray crystallography service at the University of Southampton for data collection.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1569). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 31-37.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A. \& Polidori, G. (1994). J. Appl. Cryst. 27, 435.
Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
Brill, R., Dietrich, H. \& Dierks, H. (1971). Acta Cryst. B27, 2003-2018.
Fischer, M. B. \& Gaines, D. F. (1979). Inorg. Chem. 18, 3200-3205.
Gaines, D. F., Lott, J. W. \& Calabrese, J. C. (1974). Inorg. Chem. 13, 2419-2423.
Greenwood, N. N., Kennedy, J. D., MacPherson, I. \& Thornton-Pett, M. (1986). Z. Anorg. Allg. Chem. 540, 45-58.

Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kennedy, J. D. (1986). Prog. Inorg. Chem. 34, 211-434.
Lott, J. W. \& Gaines, D. F. (1974). Inorg. Chem. 13, 2261-2267.
Lott, J. W., Gaines, D. F., Shenhav, H. \& Schaeffer, R. (1973). J. Am. Chem. Soc. 95, 3042-3043.
Otwinowski, Z. \& Minor, W. (1997). Methods Enzymol. 276, 307-326.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

